Abstract

The purpose of this study was to assess the repeatability of a dual gradient-recalled echo (GRE) muscle functional MRI technique. On 2 days, subjects (n = 8) performed 10 s isometric dorsiflexion contractions under conditions of: (1) maximal voluntary contraction (MVC), (2) 50% MVC (50% MVC), or (3) 50% MVC with concurrent proximal arterial cuff occlusion (50% MVC(cuff)). Functional MRI data were acquired using single-slice dual GRE (TR/TE = 1000/6, 46 ms)-echo planar imaging for 20 s before, during, and for 180 s after each contraction. The mean signal intensity (SI) time courses at each TE (SI(6) and SI(46), reflecting variations in blood volume and %HbO(2), respectively) from the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles were characterized with the post-contraction change in SI and the time-to-peak SI (DeltaSI and TTP, respectively). DeltaSI(6) following an MVC was 36% higher than that obtained after a 50% MVC (p = 0.048). For DeltaSI(6), the highest intraclass correlation coefficients (ICCs) were observed for the TA muscle in the 50% MVC and MVC conditions, with values of 0.83 (p = 0.01) and 0.88 (p = 0.005), respectively. Bland-Altman plots revealed repeatability coefficients (RCs) for the 50% MVC and MVC conditions in the TA muscle of 1.9 and 1.4, respectively. The most repeatable measures for DeltaSI(46) were obtained for the 50% MVC and MVC conditions in the EDL muscle (p = 0.01 and p = 0.04, respectively). Bland-Altman plots revealed RC's for 50% MVC and MVC conditions in the EDL muscle of 3.9 and 5.7, respectively. DeltaSI(6) and DeltaSI(46) increased as a function of the contraction intensity. The repeatability of the method depends on the muscle and contraction condition being evaluated, and in general, is higher following an MVC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call