Abstract
Background[15O]H2O PET/CT allows noninvasive quantification of tissue perfusion and can potentially play a future role in the diagnosis and treatment of peripheral artery disease. We aimed to evaluate the reliability of dynamic [15O]H2O PET imaging for measuring lower extremity skeletal muscle perfusion. Ten healthy participants underwent same-day test–retest study with six dynamic [15O]H2O PET scans of lower legs and feet. Manual volume-of-interests were drawn in skeletal muscles, and PET time activity curves were extracted. K1 values (mL/min/100 mL) were estimated using a single-tissue compartment model (1TCM), autoradiography (ARG), and parametric imaging with blood input functions obtained from separate heart scans.ResultsResting perfusion values in the muscle groups of the lower legs ranged from 1.18 to 5.38 mL/min/100 mL (ARG method). In the muscle groups of the feet, perfusion values ranged from 0.41 to 3.41 mL/min/100 mL (ARG method). Test–retest scans demonstrated a strong correlation and good repeatability for skeletal muscle perfusion with an intraclass correlation coefficient (ICC) of 0.88 and 0.87 and a repeatability coefficient of 34% and 53% for lower legs and feet, respectively. An excellent correlation was demonstrated when comparing volume-of-interest-based methods (1TCM and ARG) (lower legs: ICC = 0.96, feet: ICC = 0.99). Parametric images were in excellent agreement with the volume-of-interest-based ARG method (lower legs: ICC = 0.97, feet: ICC = 0.98).ConclusionParametric images and volume-of-interest-based methods demonstrated comparable resting perfusion values in the lower legs and feet of healthy individuals. The largest variation was seen between individuals, whereas a smaller variation was seen between muscle groups. Repeated measurements of resting blood flow yielded a strong overall correlation for all methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.