Abstract
In this study a 3-dimensional (3D) camera system was set up to measure individual feed intake of dairy cows in a commercial in-house setting. The system was developed to identify the cows while eating, predict body weight based on the curvature of the back of the cow, and quantify the amount of feed eaten by the cow at each visit of eating. The identification of the cow was based on recognizing the patterns, colors, and curvatures of the back from a reference database obtained in a corridor after milking, where images were taken of all cows with a simultaneous reading of the electronic ear tag. Body weight is predicted using the curvatures of the back of the cow. Feed intake is quantified as the difference in surface of the feed a cow can reach before and after a visit is initiated. This estimate is in liters but converted to kilograms, using the density of the feed in the specific herd. A total of 9,142 cows were measured in 19 herds across 3 breeds: Jersey (2,513 cows), Red Dairy Cattle (2,813 cows), and Holstein (3,816 cows). Mean daily feed intake was higher for Red Dairy Cattle (61.72 kg) and Holstein (64.59 kg) than for Jersey (55.74 kg). Repeatability estimates for daily feed intake as a weekly average was 0.62, 0.65, and 0.63 for Jersey, Red Dairy, and Holstein cattle, respectively. Mean body weight was higher for Red Dairy (647.9 kg) and Holstein (683.8 kg) than for Jersey (469.6 kg). Repeatability estimates for body weight as a weekly average was 0.83, 0.85, and 0.88 for Jersey, Red Dairy, and Holstein, respectively. The perspectives in having such records available is huge both for the farmer and for the dairy industry. The records can both be used for improving management in farms on an individual cow level and herd level, but also for genetic evaluation and selection as well as testing feeding regimens. Feed intake can be measured on an individual level using a 3D camera system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.