Abstract

BackgroundRepeat elements constitute a large proportion of the human genome and recent evidence indicates that repeat element expression has functional roles in both physiological and pathological states. Specifically for cancer, transcription of endogenous retrotransposons is often suppressed to attenuate an anti-tumor immune response, whereas aberrant expression of heterochromatin-derived satellite RNA has been identified as a tumor driver. These insights demonstrate separate functions for the dysregulation of distinct repeat subclasses in either the attenuation or progression of human solid tumors. For hematopoietic malignancies, such as Acute Myeloid Leukemia (AML), only very few studies on the expression/dysregulation of repeat elements were done.MethodsTo study the expression of repeat elements in AML, we performed total-RNA sequencing of healthy CD34 + cells and of leukemic blast cells from primary AML patient material. We also developed an integrative bioinformatic approach that can quantify the expression of repeat transcripts from all repeat subclasses (SINE/ALU, LINE, ERV and satellites) in relation to the expression of gene and other non-repeat transcripts (i.e. R/G ratio). This novel approach can be used as an instructive signature for repeat element expression and has been extended to the analysis of poly(A)-RNA sequencing datasets from Blueprint and TCGA consortia that together comprise 120 AML patient samples.ResultsWe identified that repeat element expression is generally down-regulated during hematopoietic differentiation and that relative changes in repeat to gene expression can stratify risk prediction of AML patients and correlate with overall survival probabilities. A high R/G ratio identifies AML patient subgroups with a favorable prognosis, whereas a low R/G ratio is prevalent in AML patient subgroups with a poor prognosis.ConclusionsWe developed an integrative bioinformatic approach that defines a general model for the analysis of repeat element dysregulation in physiological and pathological development. We find that changes in repeat to gene expression (i.e. R/G ratios) correlate with hematopoietic differentiation and can sub-stratify AML patients into low-risk and high-risk subgroups. Thus, the definition of a R/G ratio can serve as a valuable biomarker for AML and could also provide insights into differential patient response to epigenetic drug treatment.

Highlights

  • Repeat elements constitute a large proportion of the human genome and recent evidence indicates that repeat element expression has functional roles in both physiological and pathological states

  • Leukemic blast cells were isolated from peripheral blood of 7 patients and only for one patient were the leukemic blast cells isolated from bone marrow

  • Dysregulation of satellite and LTR/endogenous retroviruses (ERV) repeats in Acute Myeloid Leukemia (AML) patient samples Repeat elements and repetitive DNA constitute around 50% of the human genome (Additional file 1: Figure S1A and S1B) and have been classified as Long Interspersed Nuclear Elements (LINE) (~ 22%), Short Interspersed Nuclear Elements (SINE), called ALU (Arthrobacter luteus restriction endonuclease) (~ 13%), and Endogenous RetroViruses (ERV) with their associated regulatory elements within the Long Terminal Repeats (LTR) (~ 9%)

Read more

Summary

Introduction

Repeat elements constitute a large proportion of the human genome and recent evidence indicates that repeat element expression has functional roles in both physiological and pathological states. For can‐ cer, transcription of endogenous retrotransposons is often suppressed to attenuate an anti-tumor immune response, whereas aberrant expression of heterochromatin-derived satellite RNA has been identified as a tumor driver. These insights demonstrate separate functions for the dysregulation of distinct repeat subclasses in either the attenuation or progression of human solid tumors. For hematopoietic malignancies, such as Acute Myeloid Leukemia (AML), only very few studies on the expression/dysregulation of repeat elements were done. The analysis of repeat element expression/dysregulation has recently been extended to several hematological malignancies, Acute Myeloid Leukemia [13, 14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call