Abstract

We present an unsupervised learning denoising method, RepE (representation and enhancement), designed for nonlinear optical microscopy images, such as second harmonic generation (SHG) and two-photon fluorescence (TPEF). Addressing the challenge of effectively denoising images with various noise types, RepE employs an encoder network to learn noise-free representations and a reconstruction network to generate denoised images. It offers several key advantages, including its ability to (i) operate without restrictive statistic assumptions, (ii) eliminate the need for clean-noisy pairs, and (iii) requires only a few training images. Comparative evaluations on real-world SHG and TPEF images from esophageal cancer tissue slides (ESCC) demonstrate that our method outperforms existing techniques in image quality metrics. The proposed method provides a practical, robust solution for denoising nonlinear optical microscopy images, and it has the potential to be extended to other nonlinear optical microscopy modalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.