Abstract

The required approach to investigate the electronic properties of spin-crossover (SCO) compounds needs to be able to provide a reliable estimate of high-spin/low-spin (HS/LS) energy gaps while retaining an accurate and efficient computation of the ground-state energy. We propose a reparametrization approach of the density functional theory (DFT) functionals to adjust the exact exchange admixture that governs the HS/LS energy splitting. Through the investigation of the thermodynamic properties of two typical SCO compounds, we demonstrate that the computed equilibrium temperature depends linearly, like the HS/LS energy gap, on the coefficient of the exact exchange admixture. We show that by taking the experimental value of the equilibrium temperature of the studied SCO compound as a reference, different hybrid functionals converge to comparable and realistic HS/LS energy gaps as well as enthalpy and entropy differences that agree well with the prior experimental investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.