Abstract

<?Pub Dtl=""?> In distributed storage systems that employ erasure coding, the issue of minimizing the total communication required to exactly rebuild a storage node after a failure arises. This repair bandwidth depends on the structure of the storage code and the repair strategies used to restore the lost data. Designing high-rate maximum-distance separable (MDS) codes that achieve the optimum repair communication has been a well-known open problem. Our work resolves, in part, this open problem. In this study, we use Hadamard matrices to construct the first explicit two-parity MDS storage code with optimal repair properties for all single node failures, including the parities. Our construction relies on a novel method of achieving perfect interference alignment over finite fields with a finite number of symbol extensions. We generalize this construction to design <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$m$</tex></formula> -parity MDS codes that achieve the optimum repair communication for single systematic node failures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.