Abstract
Polypurine reverse Hoogsteen hairpins (PPRHs) are formed by two intramolecularly bound antiparallel homopurine domains linked by a five-thymidine loop. One of the homopurine strands binds with antiparallel orientation by Watson-Crick bonds to the polypyrimidine target sequence, forming a triplex. We had previously reported the ability of PPRHs to effectively bind dsDNA displacing the fourth strand away from the newly formed triplex. The main goal of this work was to explore the possibility of repairing a point mutation in mammalian cells using PPRHs as tools. These repair-PPRHs contain different combinations of extended sequences of DNA with the corrected nucleotide to repair the point mutation. As a model we used the dihydrofolate reductase gene. On the one hand, we demonstrate in vitro that PPRHs bind specifically to their polypyrimidine target sequence, opening the two strands of the dsDNA, and allowing the binding of a given repair oligonucleotide to the displaced strand of the DNA. Subsequently, we show at a cellular level (Chinese ovary hamster cells) that repair-PPRHs are able to correct a single-point mutation in a dihydrofolate reductase minigene bearing a nonsense mutation, both in an extrachromosomal location and when the mutated plasmid was stably transfected into the cells. Finally, this methodology was successfully applied to repair a single-point mutation at the endogenous locus, using the DA5 cell line with a deleted nucleotide in exon six of the dhfr gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.