Abstract

Tissue-engineered nerve grafts (TENGs), typically consisting of a neural scaffold included with support cells and/or growth factors, represent a promising alternative to autologous nerve grafts for surgical repair of large peripheral nerve gaps. Here, we developed a new design of TENGs by introducing bone marrow mesenchymal stem cells (MSCs) of rats, as support cells, into a silk fibroin (SF)-based scaffold, which was composed of an SF nerve guidance conduit and oriented SF filaments as the conduit lumen filler. The biomaterial SF had been tested to possess good biocompatibility and noncytoxicity with MSCs before the TENG was implanted to bridge a 10-mm-long gap in rat sciatic nerve. Functional and histological assessments showed that at 12 weeks after nerve grafting, TENGs yielded an improved outcome of nerve regeneration and functional recovery, which was better than that achieved by SF scaffolds and close to that by autologous nerve grafts. During 1-4 weeks after nerve grafting, MSCs contained in the TENG significantly accelerated axonal growth, displaying a positive reaction to S-100 (a Schwann cell marker). During 1-3 weeks after nerve grafting, MSCs contained in the TENG led to gene expression upregulation of S100 and several growth factors (brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor). These results suggest that the cell behaviors and neurotrophic functions of MSCs might be responsible for their promoting effects on peripheral nerve regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call