Abstract
The present study used a previously developed three-dimensional Gelatin/Hydroxyapatite (Gel/HA) homogeneous nanocomposite scaffold with porosity of 82% and interconnecting pores ranging from 300 to 500 μm. Cell-seeded scaffolds were used to evaluate bone regeneration of rat critical-size calvarial defect. Totally, 36 male Wistar rats were randomly divided into four experimental groups, including blank defect (defects without any graft), blank scaffold (defects filled with Gel/HA scaffold without cells), and two groups of cell-seeded scaffolds (defects filled with either Gel/HA scaffold seeded with osteoblast-like and endothelial cells or osteoblast-like cell-seeded constructs). After 1, 4, and 12 weeks of scaffold implantation, rats were sacrificed and the calvaria were harvested for histological, immunohistochemical and histomorphometric analysis. In vitro tests showed that scaffolds were nontoxic to cells and promoted ideal cellular attachment. In vivo investigation on scaffold revealed that blank calvarial defects indicated incomplete tissue coverage and little evidence of bone healing. However, blank scaffold and cell-seeded scaffolds significantly promoted osteoconduction and ostegogenesis. Taken together, pre-seeded Gel/HA nanocomposite scaffold with osteoblasts and endothelial cells presented an effective combination to improve osteogenesis in the engineered bone implant. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1770-1778, 2016.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.