Abstract

The objective of the present study was to enhance the regeneration ability of an injectable bone regeneration composite (IBRC) by the controlled release of recombinant human bone morphogenetic protein-2 (rhBMP-2). The IBRC comprised nano-hydroxyapatite/collagen (nHAC) particles in an alginate hydrogel carrier. First, bovine serum albumin (BSA) as a model protein was released from IBRC to evaluate its release rules. The results suggested that IBRC is a good controlled release carrier for BSA in the range 5-75 µg/ml. In the in vitro study the rhBMP-2 released from IBRC was determined by an enzyme-linked immunosorbent assay specific for rhBMP-2. The bioactivity of the released rhBMP-2 was evaluated through differentiated function of marrow mesenchymal stem cells (MSCs), as measured by alkaline phosphatase activity. The results of an in vitro study confirmed that rhBMP-2 released continuously for 21 days, and its bioactivity was well preserved during this period. The bone formation ability was assessed using a rat calvarial defect model of critical size. Micro-computed tomography (micro-CT) and histological analysis demonstrated that the IBRC had good bone formation ability, which was promoted through rhBMP-2 released from IBRC/rhBMP-2. In vitro and in vivo studies suggested that the present system is a potential bone critical defect repair material for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.