Abstract

Survival curves of 3 diploid (D7) yeast strains: one wild-type, one deficient in excision of pyrimidine dimers (UV-sensitive) and one blocked in DNA double-strand-break repair (X-ray-sensitive), were compared after irradiation with cyclotron-produced fast neutrons. It was observed that both the UV-sensitive ( rad3 / rad3) and the X-ray-sensitive ( rad52 / rad52) mutants were more sensitive to neutrons than the wild-type. The role of DNA double-strand-breaks in neutron-induced cell death was further studied by comparing the relative sensitivity of the rad52 / rad52 mutant to γ-rays and fast neutrons. A comparison of the dose modification factors revealed that the deficiency in DNA double-strand-break repair did not make the yeast cells more sensitive to neutrons than to photons, which suggests that lesions of a different type may also be produced by neutrons. Survival curves obtained upon immediate plating and after delayed plating of neutron-irradiated cells showed that all 3 yeast strains were efficient in liquid holding recovery. The role of different repair pathways in cellular recovery from neutron-induced lethal damage is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.