Abstract

A surface worn C-Mn rail is repaired by retrieving the lost part of the railhead using a commercial rutile flux-cored wire submerged arc welding (SAW) method. Optical microscopy (OM), scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy (EDS), and Rockwell B hardness test are employed to investigate the properties of the repaired rail specimen. After the first set of analysis, the as-repaired rail is heated up to 1100 °C and water-quenched to room temperature to increase hardness. Each specimen is analytically partitioned into three zones including weld zone (WZ), heat-affected zone (HAZ), and the unaffected rail substrate. The as-repaired rail WZ is primarily composed of pearlite, ferrite, and austenite with a low hardness of 80 HRB, whereas the austenite phase is gone in the as-quenched rail and a massive extent of carbides are precipitated which increased hardness to 95 HRB. The microstructure of the HAZ in the as-repaired sample is a uniform distribution of fine-grained ferrite, pearlite, and carbide with the hardness of 92 HRB, while the microstructure of the identical zone in the as-quenched specimen is mainly martensitic-pearlitic with the highest average hardness among all zones, 110 HRB. The results presented an immense potential for SAW in rail repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call