Abstract

Our objective was to examine the technique of regenerating cartilage tissue from bone marrow-derived cells by three-dimensional (3D) culture using the rotating wall vessel (RWV) bioreactor. Three-dimensional and cylindrical aggregates of allogeneic cartilage with dimensions of 10 x 5 mm (height x diameter) formed by the RWV bioreactor were transplanted into osteochondral defects of Japanese white rabbits (Group T, n = 15). For the control, some osteochondral defects were left empty (Group C, n = 18). At 4, 8, and 12 weeks postimplantation, the reparative tissues were evaluated macroscopically, histologically, and biochemically. In Group T at as early as 4 weeks, histological observation, especially via safranin-O staining, suggested that the reparative tissues resembled hyaline cartilage. And we observed no fibrous tissues between reparative tissue and adjacent normal tissues. In the deeper portion of the bony compartment, the osseous tissues were well remodeled. At 4 and 8 weeks postimplantation, the mean histological score of Group T was significantly better than that of Group C (p < 0.05). The glycosaminoglycans (GAG)/DNA ratio in both groups increased gradually from 4 to 8 weeks and then decreased from 8 to 12 weeks. We herein report the first successful regeneration of cartilage in osteochondral defects in vivo using allogeneic cartilaginous aggregates derived from bone marrow-derived cells by 3D culture using the RWV bioreactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.