Abstract

The surface morphology of Bence-Jones protein (BJP) crystals was investigated during growth and dissolution by using in situ atomic force microscopy (AFM). It was shown that over a wide supersaturation range, impurities adsorb on the crystalline surface and ultimately form an impurity adsorption layer that prevents further growth of the crystal. At low undersaturations, this impurity adsorption layer prevents dissolution. At greater undersaturation, dissolution takes place around large particles incorporated into the crystal, leading to etch pits with impurity-free bottoms. On restoration of supersaturation conditions, two-dimensional nucleation takes place on the impurity-free bottoms of these etch pits. After new growth layers fill in the etch pits, they cover the impurity-poisoned top layer of the crystal face. This leads to the resumption of its growth. Formation of an impurity-adsorption layer can explain the termination of growth of macromolecular crystals that has been widely noted. Growth-dissolution-growth cycles could be used to produce larger crystals that otherwise would have stopped growing because of impurity poisoning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call