Abstract

Several repair techniques for restoring the structural capacity of heat-damaged high-strength reinforced concrete shallow beams using advanced composites are proposed. A series of 16 under-reinforced concrete hidden beams were cast, heated at 600°C for 3 h, repaired, and then tested under four point-loading. Tests were conducted to study the effectiveness of externally applied composite materials on increasing the flexural capacity of beams. The composites used include high strength fiber reinforced concrete jackets; ferrocement laminates; and high-strength fiber glass sheets. The beams repaired with steel and high performance polypropylene fiber reinforced concrete jackets regained up to 108 and 99% of the control beams’ ultimate load capacity, with a corresponding increase in stiffness of up to 104 and 98%, respectively. The beams repaired with fiber glass sheets and ferrocement meshes regained up to 126 and 99% of the control beams’ ultimate load capacity, with a corresponding increase in stiffness of up to 160 and 156%, respectively. Most of the beams repaired showed a typical flexural failure with very fine and well-distributed hairline cracks in the constant moment region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call