Abstract

Fiber reinforced polymer (FRP) composites have emerged as a lightweight and efficient repair and retrofit material for many concrete infrastructure applications. Externally bonded FRP laminates have been shown to be an effective material when used as supplemental flexural and shear reinforcement for reinforced concrete and prestressed concrete beams. One problem afflicting bridge girders is the deterioration of the beam ends due to deicing salt exposure, thus reducing their shear strength. In this study, concrete cover damages are imposed on small scale prestressed concrete beams, which are tested in three-point bending to determine the effect of this type of damage on the shear capacity of the beams. A quick setting mortar repair is used to replace the damaged cover concrete and test its ability to recover the shear strength of the beam. The results show the mortar repair alone is insufficient in regaining the beam’s original strength and stiffness. Externally bonded glass and carbon FRP laminates are used as shear reinforcement in conjunction with the mortar repair to recover the strength of the beam. CFRP laminates were superior to GFRP laminates in regaining and exceeding the stiffness and strength of the undamaged beam for this application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.