Abstract

Repair of bone lost to trauma, disease, or birth defect requires regeneration of large volumes of structurally complex bone. Current bone repair methods, like bone grafts or particulate materials, are imperfect for repair of complex craniofacial defects which require formation of large amounts of natural, mechanically strong bone. 3D-printed, Direct Write (DW), scaffolds composed of tricalcium phosphate (TCP) with temporary calcium sulfate filler can serve as a better option to repair large complex bone defects. Such scaffolds are mechanically stable and can be custom printed to match the exact defect shape and size. Current literature debates scaffold pore sizes for optimal bone repair, stating scaffold pore size should be from 100-400μm. The objective of this study is to determine how pore size dictates the quality of ingrowing bone. This will allow the design of scaffolds that can regenerate the natural architecture and mechanical properties of bone in complex craniofacial defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.