Abstract

ABSTRACTFabrication and transplantation of tissue-engineered bones in a rotating wall vessel bioreactor (RWVB) was studied in the present study aiming to repair segmental bone defects. Osteoblasts were transfected with green fluorescent protein prior to seeding on bio-derived porous bone scaffolds at a density of 1 × 106 cells/mL and cultured in an RWVB for one week. For comparison, constructs were also cultured in a static condition. Morphology and structure of fabricated bones were examined using an inverted microscope, scanning electron microscope and histology analysis via hematoxylin–eosin and toluidine blue staining. Moreover, an animal model for repairing segmental bone defects of a Zelanian rabbit was used to assess the efficacy and biosafety of fabricated bones. In conclusion, tissue-engineered bones grew favorably in RWVB. In animal study, a preliminary repair of bone defects was noticed only in the experimental group after 4 weeks of implantation. Using RWVB, the fabricated tissue-engineered bone constructs were approved with better bio-capability in repairing the segmental bone defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.