Abstract

Studies of the repair of DNA lesions at biologically important doses is extremely difficult for most mutagens. With 8-methoxypsoralen (8-MOP) plus longwave ultraviolet light (UVA) as the lesion-inducing agent, however, it is easy to manipulate the relative frequency of different DNA adducts by means of a special experimental protocol (the tap-and-test protocol) and this can be used to measure repair of DNA adducts. Three classes of photoadducts are produced by 8-MOP plus UVA treatment: 3,4-cyclobutane monoadducts, 4′,5′-cyclobutane monoadducts, and 8-MOP-DNA interstrand crosslinks. A monoadduct is formed when a photoactivated 8-MOP molecule reacts with a pyrimidine base. An 8-MOP-DNA interstrand crosslink is formed when an existing monoadduct is photoactivated to react with another pyrimidine base on the opposite DNA strand. Thus monoadducts are formed by absorption of one photon of light and crosslinks by absorption of two. In the tap-and-test experiments, cells were exposed to UVA in the presence of 8-MOP and then re-exposed to UVA in the absence of free 8-MOP so that only crosslinks can be produced by the second UVA treatment. By means of this technique we have previously shown that DNA crosslinks are much more effective than monoadducts at producing chromosome damage (sister-chromatid exchanges and micronuclei) but not mutations (Liu-Lee et al., 1984). If L5178Y mouse lymphoma cells were able to remove monoadducts, incubation prior to the second UVA treatment should lead to decreases in the effect of re-irradiation, because fewer monoadducts would be available for crosslink formation. In this way, we have found that psoralen monoadducts are repaired in these cells and that about 70% of those capable of crosslink formation are removed or otherwise made unavailable for crosslink formation in 6 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.