Abstract
Pig skin was irradiated using 90Sr/90Y plaques and the dose-related incidence of induced moist desquamation was determined. The repair of radiation-induced sublethal damage (SLD) was studied by fitting these response data to the generalized LQ equation for incomplete repair using quasilikelihood methods with binomial statistics, and either a Poisson or logistic link to relate the probability of response to the covariates. A Poisson response analysis based on the assumption that SLD was governed by two repair processes gave estimated repair half-times of 0.20 [(95% confidence limits) 0.12, 0.34] and 6.6 [4.3, 10.0] h. The estimates of the short and long repair half-times were significantly different, although there was no significant difference between the results using the Poisson and logistic modes of analyses. The partition coefficient for the longer repair process was 0.5 [0.34, 0.71] indicating that about 33% of SLD-derived lethal damage is associated with the longer repair process in the case of 'complete repair' protocols. However, this proportionation is, in general, protocol dependent for incomplete repair protocols. A chi2 test on the residual deviance showed that the assumption of two repair processes for SLD gave a superior fit to the data than a single repair process at a significance level >99%. The radiation dose to the assumed target cell population depends upon their depth from the skin surface, due to the relatively short range of the electron emission from the 90Sr/90Y plaques. However, further modelling analyses have shown that the estimated repair half-times were independent of the assumed target cell distribution in the skin. This is in contrast with the alpha/beta ratio, where different (clinically significant) estimates can be obtained depending upon the assumed target cell distribution. If the target cells were at 16 micrometer depth from the surface of the skin, the estimated value for the alpha/beta ratio using the biphasic repair model would be 4.6[3.6, 5.6] Gy(Poisson analysis). However, the estimates decrease with the assumed depth (distribution) of the target cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.