Abstract
AbstractOrganic single crystals that are capable of transmitting light and charge are quickly shaping into a new forefront of research in photoelectronic materials that is thought to hold a tremendous potential for the broader field of organic electronics. However, one of the main disadvantages that currently stands against the direct application of organic single crystals in that capacity is their pronounced proneness to mechanical damage due to brittleness, abrasion, and wear. To account for this drawback, here a simple and universal strategy is proposed for the recovery of macroscopic integrity of cracked or completely fractured crystals based on the layer‐by‐layer charged polymer assembly approach that can be used to effectively recover the damaged crystals. It is shown that in addition to being an effective means for reasonable restoration of their optical waveguiding ability, this approach can also be used to combine different crystals into hybrid organic photonic integrated circuits (OPICs) and even to construct dynamic hybrid OPICs as active and/or passive optical waveguides. The resulting integrated crystalline OPIC bundles act as optical waveguides for transmission of light with different colors and can also be used for light mixing to generate white light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.