Abstract

Three aspects of recombination of UV-irradiated nonreplicating lambda phage DNA were addressed: the photoproduct(s) responsible, the role of UvrABC-mediated excision repair, and the dependence on RecF function. Cyclobutane pyrimidine dimers appeared responsible for some recombination because photoreactivation reduced the frequency of 254-nm-stimulated recombination and because photosensitized 313-nm irradiation stimulated recombination. Other photoproducts seemed recombinogenic as well, because high fluences of 254-nm irradiation stimulated recombination considerably more, per cyclobutane dimer induced, than photosensitized 313-nm irradiation, and because photoreactivation did not eliminate 254-nm stimulated recombination. For both treatments, much, but not all, of the recombination was UvrABC-dependent. Recombination was mostly RecF-dependent, but was not affected by recB recC or recE mutations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.