Abstract
Pathway analysis has been extensively applied to aid in the interpretation of the results of genome-wide transcription profiling studies, and has been shown to successfully find associations between the biological phenomena under study and biological pathways. There are two widely used approaches of pathway analysis: over-representation analysis, and gene set analysis. Recently genome-wide transcription factor binding data has become widely available allowing for the application of pathway analysis to this type of data. In this work, we developed regulatory enrichment pathway analysis (REPA) to apply gene set analysis to genome-wide transcription factor binding data to infer associations between transcription factors and biological pathways. We used the transcription factor binding data generated by the ENCODE project, and gene sets from the Molecular Signatures and KEGG databases. Our results showed that 54 percent of the predictions examined have literature support and that REPA's recall is roughly 54 percent. This level of precision is promising as several of REPA's predictions are expected to be novel and can be used to guide new research avenues. In addition, the results of our case studies showed that REPA enhances the interpretation of genome-wide transcription profiling studies by suggesting putative regulators behind the observed transcriptional responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.