Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep breathing disorder characterized by intermittent hypoxia (IH), with continuous positive airway pressure (CPAP) as its standard treatment. However, the effects of intermittent hypoxia/reoxygenation (IH/R) on weight regulation in obesity and its underlying mechanism remain unclear. Gut microbiota has gained attention for its strong association with various diseases. This study aims to explore the combined influence of IH and obesity on gut microbiota and to investigate the impact of reoxygenation on IH-induced alterations. Diet-induced obese (DIO) rats were created by 8-week high-fat diet (HFD) feeding and randomly assigned into three groups (n=15 per group): normoxia (NM), IH (6% O2, 30 cycles/h, 8 h/day, 4 weeks), or hypoxia/reoxygenation (HR, 2-week IH followed by 2-week reoxygenation) management. After modeling and exposure, body weight and biochemical indicators were measured, and fecal samples were collected for 16S rRNA sequencing. DIO rats in the IH group showed increased weight gain (p=0.0016) and elevated systemic inflammation, including IL-6 (p=0.0070) and leptin (p=0.0004). Moreover, IH rats exhibited greater microbial diversity (p<0.0167), and significant alterations in the microbial structure (p=0.014), notably the order Clostridiales, accompanied by an upregulation of bile acid metabolism predicted pathway (p=0.0043). Reoxygenation not only improved IH-exacerbated obesity, systemic inflammation, leptin resistance, and sympathetic activation, but also showed the potential to restore IH-induced microbial alterations. Elevated leptin levels were associated with Ruminococcaceae (p=0.0008) and Clostridiales (p=0.0019), while body weight was linked to Blautia producta (p=0.0377). Additionally, the abundance of Lactobacillus was negatively correlated with leptin levels (p=0.0006) and weight (p=0.0339). IH leads to gut dysbiosis and metabolic disorders, while reoxygenation therapy demonstrates a potentially protective effect by restoring gut homeostasis and mitigating inflammation. It highlights the potential benefits of CPAP in reducing metabolic risk among obese patients with OSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.