Abstract

Mammalian orthoreoviruses (reoviruses) are ubiquitous viral agents that infect cells in respiratory and enteric tracts. The frequency and nature of human cellular immunoregulatory responses against reovirus are unknown. Here we establish systems to detect and quantify reovirus-induced cytokine and chemokine recall responses using primary cultures of virus-infected peripheral blood mononuclear cells (PBMC) and two widely used reovirus serotypes, type 1 Lang (T1L) and type 3 Dearing (T3D) reexposure in vitro. In cultures from 44 healthy adults, reovirus induced exceptionally strong CD4 and CD8 T-cell-dependent gamma interferon (IFN-gamma) recall responses concomitant with intense interleukin 10 (IL-10) production. These responses were elicited independently of viral replication. Surprisingly, paired analyses of subject responses to these two common serotypes revealed that while both elicit intense Th1-dominated immunity, median T3D-driven responses were 2.2-fold weaker (P = 0.0004) than those elicited by T1L. Recall responses evoked by these viral serotypes differed markedly in their mechanism of regulation. T3D IL-10 and IFN-gamma responses were CD4 and CD8 dependent and blocked by interfering with CD86 costimulation but were CD80 independent. T1L responses were consistently CD28 and CD80/86 independent. Thus, despite extensive genetic and morphological similarities between reovirus serotypes, the nature and intensity of the human recall responses as well as the control mechanisms regulating them are clearly distinct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call