Abstract

Because of the progressive decrease in rotation rate of the solar plasma at increasing latitudes, the photospheric foot-points of large-scale closed magnetic structures in the corona, which are originally widely separated in longitude, may ultimately be brought into proximity. Magnetic mergers and reconnections between magnetic fields of opposite polarity are presumed to occur, producing major structural changes in the corona and in the locations of underlying filaments. Thus we believe that the differential rotation phenomenon is essential to understanding both gradual (evolutionary) and sudden (transient) changes in the corona, and that they can occur without any observable change in the photospheric magnetic flux. A process is suggested for the splitting or bifurcation of a high-latitude magnetic structure, producing two separate components at the same latitude, whose rotation rates are influenced by their respective magnetic linkages to other regions on the Sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call