Abstract

Abstract Based on the cat-righting reflex, this paper presents two reorientation maneuvers for legged robots that can produce roll and pitch reorientation during free fall. In order to better describe and plan these maneuvers, two separate, but equivalent, theoretical frameworks that describe the kinematic and dynamic behavior of free-floating articulated architectures are explored and developed. A nine-degree-of-freedom quadruped robot architecture is then presented and used to demonstrate the proposed maneuvers. Finally, kinematic and dynamic simulations of this architecture are performed. The results validate the presented theoretical framework and demonstrate that both roll and pitch reorientations are obtained through the application of the presented maneuvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call