Abstract

The F-actin distribution in caulonemal tip cells of the moss Ceratodon purpureus was examined by rhodamine-phalloidin staining. Gravitropically-growing caulonemal tip cells of the moss possess a distinct alignment of microfilaments (MFs) in their apices. Axially oriented actin bundles run from subapical regions to the apex where they converge towards a central area of the tip, although bundles are absent from the central area itself thus forming a collar-like structure. During a unilateral red light irradiation the actin strands of the apical dome become reoriented towards the irradiated apical flank and still surround an area free of MFs, the point of prospective outgrowth. This process is closely correlated with the morphological effect of bulging and precedes the light-directed outgrowth. The collar structure is essential for the tubular growth form. In darkness, under the influence of antimicrotubule agents the structure is decomposed, the actin strands drift along the cell flanks and finally accumulate in randomly distributed areas where further growth takes place. The microtubules (MTs) are not involved in the phytochrome-mediated reorientation of the microfilaments. Unilateral red light suppresses the distorting effect of antimicrotubule drugs and restores the collar structure with a pronounced light-directed orientation. Instead, the MTs seem to be responsible for restricting the reorientation to the cell tip. This notion is based on the observation that the small area in the apical dome, which is normally the exclusive location of the light-regulated MF rearrangement, extends towards the cell base when MT inhibitors are applied before the unilateral red light irradiation. This in turn leads to a non-tubular expansion of the light-directed cell flank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.