Abstract

To deepen understanding of the electron transfer through a peptide backbone, we have investigated a series of noncyclic and cyclic ferrocene-peptide (Fc-peptide) cystamine conjugates immobilized on the gold microelectrode. Interaction of the ferrocenium group with BF4-, ClO4-, and PF6- as counterions was explored and the electron-transfer rates and reorganization energies were determined by variable temperature cyclic voltammetry. The highest reorganization energy was observed for the BF4- counterion, which has the weakest ability to associate with the ferrocenium cation. In addition, the more rigid cyclic Fc-peptide conjugates have a smaller reorganization energy ranging from 0.3 to 0.5 eV compared to less rigid noncyclic Fc-peptide cystamine conjugates which have higher reorganization energies in the range of 0.5-1.0 eV, which suggests that the dynamic properties of the conjugate play a role in mediating electron transfer in these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.