Abstract

A family of three ruthenium bipyridyl rigid-rod compounds of the general form [Ru(bpy)2(LL)](PF6)2 were anchored to mesoporous thin films of tin-doped indium oxide (ITO) nanocrystals. Here, LL is a 4-substituted 2,2-bipyridine (bpy) ligand with varying numbers of conjugated phenylenethynylene bridge units between the bipyridine ring and anchoring group consisting of a bis-carboxylated isophthalic group. The visible absorption spectra and the formal potentials, Eo(RuIII/II), of the surface anchored rigid-rods were insensitive to the presence of the phenylene ethynylene bridge units in 0.1 M tetrabutyl ammonium perchlorate acetonitrile solutions (TBAClO4/CH3CN). The conductive nature of the ITO enabled potentiostatic control of the Fermi level and hence a means to tune the Gibbs free energy change, -ΔG°, for electron transfer from the ITO to the rigid-rods. Pseudo-rate constants for this electron transfer reaction increased as the number of bridge units decreased at a fixed -ΔG°. With the assumption that the reorganization energy, λ, and the electronic coupling matrix element, Hab, were independent of the applied potential, rate constants measured as a function of -ΔG° and analyzed through Marcus-Gerischer theory provided estimates of Hab and λ. In rough accordance with the dielectric continuum theory, λ was found to increase from 0.61 to 0.80 eV as the number of bridge units was increased. In contrast, Hab decreased markedly with distance from 0.54 to 0.11 cm-1, consistent with non-adiabatic electron transfer. Comparative analysis with previously published studies of bridges with an sp3-hybridized carbon indicated that the phenylene ethynylene bridge does not enhance electronic coupling between the oxide and the rigid-rod acceptor. The implications of these findings for practical applications in solar energy conversion are specifically discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call