Abstract

Local changes in microtubule organization and distribution are required for the axon to grow and navigate appropriately; however, little is known about how microtubules (MTs) reorganize during directed axon outgrowth. We have used time-lapse digital imaging of developing cortical neurons microinjected with fluorescently labeled tubulin to follow the movements of individual MTs in two regions of the axon where directed growth occurs: the terminal growth cone and the developing interstitial branch. In both regions, transitions from quiescent to growth states were accompanied by reorganization of MTs from looped or bundled arrays to dispersed arrays and fragmentation of long MTs into short MTs. We also found that long-term redistribution of MTs accompanied the withdrawal of some axonal processes and the growth and stabilization of others. Individual MTs moved independently in both anterograde and retrograde directions to explore developing processes. Their velocities were inversely proportional to their lengths. Our results demonstrate directly that MTs move within axonal growth cones and developing interstitial branches. Our findings also provide the first direct evidence that similar reorganization and movement of individual MTs occur in the two regions of the axon where directed outgrowth occurs. These results suggest a model whereby short exploratory MTs could direct axonal growth cones and interstitial branches toward appropriate locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.