Abstract
We consider the vehicle-routing problem with stochastic demands (VRPSD) under reoptimization. We develop and analyze a finite-horizon Markov decision process (MDP) formulation for the single-vehicle case and establish a partial characterization of the optimal policy. We also propose a heuristic solution methodology for our MDP, named partial reoptimization, based on the idea of restricting attention to a subset of all the possible states and computing an optimal policy on this restricted set of states. We discuss two families of computationally efficient partial reoptimization heuristics and illustrate their performance on a set of instances with up to and including 100 customers. Comparisons with an existing heuristic from the literature and a lower bound computed with complete knowledge of customer demands show that our best partial reoptimization heuristics outperform this heuristic and are on average no more than 10%–13% away from this lower bound, depending on the type of instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.