Abstract

Most applications of the cloudy bag model to \ensuremath{\pi}N scattering involve unitarizing the bare diagrams arising from the Lagrangian by iterating in a Lippmann-Schwinger equation. However, analyses of the renormalization of the coupling constant proceed by iterating the Lagrangian to a given order in the bare coupling constant. These two different approaches means there is an inconsistency between the calculation of phase shifts and the calculation of renormalization. A remedy to this problem is presented that has the added advantage of improving the fit to the phase shifts in the ${P}_{11}$ channel. This is achieved by using physical values of the coupling constant in the crossed diagram which reduces the repulsion rather than adds attraction. This approach can be justified by examining equations for the \ensuremath{\pi}\ensuremath{\pi}N system that incorporate three-body unitarity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.