Abstract

We present a method to accelerate the numerical evaluation of spatial integrals of Feynman diagrams when expressed on the real frequency axis. This can be realized through use of a renormalized perturbation expansion with a constant but complex renormalization shift. The complex shift acts as a regularization parameter for the numerical integration of otherwise sharp functions. This results in an exponential speed up of stochastic numerical integration at the expense of evaluating additional counter-term diagrams. We provide proof of concept calculations within a difficult limit of the half-filled 2D Hubbard model on a square lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.