Abstract
We construct non-semisimple $2+1$-TQFTs yielding mapping class group representations in Lyubashenko's spaces. In order to do this, we first generalize Beliakova, Blanchet and Geer's logarithmic Hennings invariants based on quantum $\mathfrak{sl}_2$ to the setting of finite-dimensional non-degenerate unimodular ribbon Hopf algebras. The tools used for this construction are a Hennings-augmented Reshetikhin-Turaev functor and modified traces. When the Hopf algebra is factorizable, we further show that the universal construction of Blanchet, Habegger, Masbaum and Vogel produces a $2+1$-TQFT on a not completely rigid monoidal subcategory of cobordisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.