Abstract
We introduce a class of 2d Ising models with aperiodic modulations of the coupling constants following a 2d substitution rule. The relevance of the aperiodicity to the phase transition is examined through an approximative real space renormalization group approach known as the cumulant approximation. We find that the relevance of the aperiodic disorder is determined by the fluctuations of the mean coupling as predicted by the Harris–Luck criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.