Abstract
Based on the nonequilibrium Keldysh technique in the atomic representation, the effect of inducing a varied population of magnetic states of a spin dimer interacting with electrons transported through a system in a zero magnetic field was studied. In order to find the filling numbers of the quantum states of the system under the strong nonequilibrium condition, a system of kinetic equations was derived and solved by the method of nonequilibrium diagram technique for Hubbard operators. Numerical analysis of these equations made it possible to reveal nonequilibrium renormalizations when accounting for strong spin-fermion correlations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.