Abstract

The renormalization group (RG) flow for the two-dimensional sine-Gordon model is determined by means of Polchinski's RG equation at next-to-leading order in the derivative expansion. In this paper, we have two different goals, (i) to consider the renormalization scheme-dependence of Polchinski's method by matching Polchinski's equation with the Wegner–Houghton equation and with the real space RG equations for the two-dimensional dilute Coulomb-gas, (ii) to go beyond the local potential approximation in the gradient expansion in order to clarify the supposed role of the field-dependent wave-function renormalization. The well-known Coleman fixed point of the sine-Gordon model is recovered after linearization, whereas the flow exhibits strong dependence on the choice of the renormalization scheme when non-linear terms are kept. The RG flow is compared to those obtained in the Wegner–Houghton approach and in the dilute gas approximation for the two-dimensional Coulomb-gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.