Abstract

While he derived the equation for the radiation force, Dirac (1938) mentioned a possibility to use different choices for the 4-momentum of an emitting electron. Particularly, the 4-momentum could be non-colinear to the electron 4-velocity. This ambiguity in the electron 4-momentum allows us to assume that the mass of emitting electron may be an operator, or, at least, a 4-tensor instead of being the usually assumed scalar, which relates the 4-velocity of a bare charge to the total momentum of a dressed point electron, the latter being a total of the momentum of the bare electron and that of the own electromagnetic field. On applying the re-normalization procedure to the mass operator, we arrive at an interesting dichotomy. The first choice (more close to traditional one) ensures the radiation force to be orthogonal to the 4-velocity. In this way the re-normalization results in the Lorentz-Abraham-Dirac equation or in the Eliezer equation. However, the 4-momentum of electron in this case is not well defined: the equality in the relativistic entity (E/c)^2=m^2c^2+p^2 appears to be broken and even the energy is not definite positive. The latter is an underlying reason for the 'run-away' solution. The other choice is to require the radiation force to be orthogonal to the 4-momentum (not to the 4-velocity). In this case the energy and momentum are well-defined and obey the relationship (E/c)^2=m^2c^2+p^2. Remarkably, the equations of a particle's motion in this case differ significantly from all the known versions. They appear to be well founded. They are simple, easy to solve, and can be applied to simulate the particle motion in the focus of an ultra-bright laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.