Abstract

We use the functional renormalization group approach with partial bosonization in the particle-particle channel to study the effect of order parameter fluctuations on the BCS-Bose-Einstein condensate (BEC) crossover of superfluid fermions in three dimensions. Our approach is based on a new truncation of the vertex expansion where the renormalization group flow of bosonic two-point functions is closed by means of Dyson-Schwinger equations and the superfluid order parameter is related to the single-particle gap via a Ward identity. We explicitly calculate the chemical potential, the single-particle gap, and the superfluid order parameter at the unitary point and compare our results with experiments and previous calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call