Abstract

The renormalization of the periodic potential is investigated in the framework of the Euclidean one-component scalar field theory by means of the differential RG approach. Some known results about the sine-Gordon model are recovered in an extremely simple manner. There are two phases: an ordered one with asymptotical freedom and a disordered one where the model is nonrenormalizable and trivial. The order parameter of the periodicity, the winding number, indicates spontaneous symmetry breaking in the ordered phase where the fundamental group symmetry is broken and the solitons acquire dynamical stability. It is argued that the periodicity and the convexity are such strong constraints on the effective potential that it always becomes flat. This flattening is reproduced by integrating out the RG equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.