Abstract
A general ansatz in Renormalization Theory, already established in many important situations, states that exponential convergence of renormalization orbits implies that topological conjugacies are actually smooth (when restricted to the attractors of the original systems). In this paper we establish this principle for a large class of bicritical circle maps, which are $C^3$ circle homeomorphisms with irrational rotation number and exactly two (non-flat) critical points. The proof presented here is an adaptation, to the bicritical setting, of the one given by de Faria and de Melo for the case of a single critical point. When combined with some recent papers, our main theorem implies $C^{1+\alpha}$ rigidity for real-analytic bicritical circle maps with rotation number of bounded type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.