Abstract

We discuss a special Euclidean [Formula: see text]-quantum field theory over quantized space-time as an example of a renormalizable field theory. Using a Ward identity, it was possible to prove the vanishing of the beta function for the coupling constant to all orders in perturbation theory. We extend this work and obtain from the Schwinger-Dyson equation a non-linear integral equation for the renormalized two-point function alone. The non-trivial renormalized four-point function fulfils a linear integral equation with the inhomogeneity determined by the two-point function. These integral equations might be the starting point of a nonperturbative construction of a Euclidean quantum field theory on a noncommutative space. We expect to learn about renormalization from this almost solvable model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.