Abstract

A mechanism of the quasi-one-dimensional (q1d) superconductivity is investigated by applying the renormalization group techniques to the pairing interaction. With the obtained renormalized pairing interaction, the transition temperature Tc and corresponding gap function are calculated by solving the linearized gap equation. For reasonable sets of parameters, Tc of p-wave triplet pairing is higher than that of d-wave singlet pairing due to the one-dimensionality of interaction. These results can qualitatively explain the superconducting properties of q1d organic conductor (TMTSF)2PF6 and the ladder compound Sr2Ca12Cu24O41.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.