Abstract
We study the phase transition from free flow to congested phases in the Nagel-Schreckenberg (NS) model by using the dynamically driven renormalization group (DDRG). The breaking probability p that governs the driving strategy is investigated. For the deterministic case p=0, the dynamics remain invariant in each renormalization-group (RG) transformation. Two fully attractive fixed points, ρ_{c}^{*}=0 and 1, and one unstable fixed point, ρ_{c}^{*}=1/(v_{max}+1), are obtained. The critical exponent ν which is related to the correlation length is calculated for various v_{max}. The critical exponent appears to decrease weakly with v_{max} from ν=1.62 to the asymptotical value of 1.00. For the random case p>0, the transition rules in the coarse-grained scale are found to be different from the NS specification. To have a qualitative understanding of the effect of stochasticity, the case p→0 is studied with simulation, and the RG flow in the ρ-p plane is obtained. The fixed points p=0 and 1 that govern the driving strategy of the NS model are found. A short discussion on the extension of the DDRG method to the NS model with the open-boundary condition is outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.