Abstract

Abstract Chapter 5 first recalls the importance of the concept of scale decoupling in physics. It then emphasizes that quantum field theory and the theory of critical phenomena have provided two examples where this concepts fails. To deal with such a situation, a new tool has been invented: the renormalization group. In the framework of effective quantum field theory, a perturbative renormalization group has been formulated. Its implementation has led to the discovery of fixed points as zeros of beta functions, and calculations of critical exponents of a class of macroscopic phase transitions in the form of Wilson–Fisher epsilon or fixed dimension expansions. These expansions being divergent, they could summed by methods based on the Borel transformation and the determination of the large order behaviour of perturbation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.