Abstract

We analyze the one-dimensional (1D) and the two-dimensional (2D) repulsive Hubbard models (HM) for densities slightly away from half-filling through the behavior of two central quantities of a system: the uniform charge and spin susceptibilities. We point out that a consistent renormalization group treatment of them can only be achieved within a two-loop approach or beyond. In the 1D HM, we show that this scheme reproduces correctly the metallic behavior given by the well-known Luttinger liquid fixed-point result. Then, we use the same approach to deal with the more complicated 2D HM. In this case, we are able to show that both uniform susceptibilities become suppressed for moderate interaction parameters as one take the system towards the Fermi surface. Therefore, this result adds further support to the interpretation that those systems are in fact insulating spin liquids. Later, we perform the same calculations in 2D using the conventional random phase approximation, and establish clearly a comparison between the two schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.