Abstract

Diffusion processes in the presence of hierarchical distributions of transition rates or waiting times are investigated by Renormalization Group (RG) techniques. Diffusion on one-dimensional chains, loop-less fractals and fully ultrametric spaces are considered. RG techniques are shown to be most natural and powerful to apply when infinitely many time scales are simultaneously involved in a problem. Generalizations and extensions of existing models and results are easily accomplished in the RG context. Wherever possible, heuristic scaling arguments are also presented in order to give an easier physical interpretation of the analytical results. Two relevant applications of ultradiffusion models are reviewed in detail. One of them concerns breakdown of dynamic scaling in a one-dimensional hierarchical Glauber chain. The other one is in the context of tethered random surface models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.