Abstract

We study the quantum diffusion in quasiperiodic tight-binding models in one, two, and three dimensions. First, we investigate a class of one-dimensional quasiperiodic chains, in which the atoms are coupled by weak and strong bonds aligned according to the metallic-mean sequences. The associated generalized labyrinth tilings in d dimensions are then constructed from the direct product of d such chains, which allows us to consider rather large systems numerically. The electronic transport is studied by computing the scaling behavior of the mean-square displacement of the wave packets with respect to the time. The results reveal the occurrence of anomalous diffusion in these systems. By extending a renormalization group approach, originally proposed for the golden-mean chain, we show also for the silver-mean chain as well as for the higher-dimensional labyrinth tilings that in the regime of strong quasiperiodic modulation the wave-packet dynamics are governed by the underlying quasiperiodic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.